Multimodal Optimization using Self-Adaptive Real Coded Genetic Algorithm with K-means & Fuzzy C-means Clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

Particle Swarm Optimization Algorithm Based k-means and Fuzzy c-means clustering

Data mining is the process of extracting hidden patterns from huge data. Among the various clustering algorithms, k-means is the one of most widely used clustering technique in data mining. The performance of k-means clustering depends on the initial clusters and might converge to local optimum. K-means does not guarantee the unique clustering because it generates different results with randoml...

متن کامل

Enhanced Clustering Based on K-means Clustering Algorithm and Proposed Genetic Algorithm with K-means Clustering

-In this paper targeted a variety of techniques, tactics and distinctive areas of the studies that are useful and marked because the crucial discipline of information mining technologies. The overall purpose of the system of statistics mining is to extract beneficial facts from a large set of information and changing it right into a shape that is comprehensible for in addition use. Clustering i...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

Clustering with Niching Genetic K-means Algorithm

GA-based clustering algorithms often employ either simple GA, steady state GA or their variants and fail to consistently and efficiently identify high quality solutions (best known optima) of given clustering problems, which involve large data sets with many local optima. To circumvent this problem, we propose Niching Genetic K-means Algorithm (NGKA) that is based on modified deterministic crow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Advanced Computer Science and Applications

سال: 2011

ISSN: 2158-107X,2156-5570

DOI: 10.14569/ijacsa.2011.020821